If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8x^2-20x-8=0
a = -8; b = -20; c = -8;
Δ = b2-4ac
Δ = -202-4·(-8)·(-8)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-12}{2*-8}=\frac{8}{-16} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+12}{2*-8}=\frac{32}{-16} =-2 $
| 8-0.7x=3.75 | | 2(x-7)–7(x+3)=3(x+6) | | p/2.5=5 | | (6k/4)=510 | | 2x+50=5x-80 | | -x2+9x-100=0 | | -17=5w* | | 13–2x=3x–2 | | |2p-1|=9 | | 12m=18/9 | | 61x-305=2135 | | (4y)-(3)=13 | | 4(3x-1)-1(x-2)=42 | | 6x–11=3–x | | 9(x-3)-5=-68 | | 6(x+17)=144 | | 3(x+7)+12=30 | | 4(x+12)+15=55 | | 20u-4=12 | | 20u-8=8 | | 20u-11=5 | | 6(x-5)-16=-82 | | 20u-5=11 | | 1(x+17)=18 | | 20u=16 | | 2.1(2c+1)= | | 1(x+3)-10=-8 | | 9(x+14)+9=189 | | -3.22x(2x-1)=17.6 | | 10x+15=-55 | | 2(x+16)+13=45 | | 2=18q |